A constructive algorithm for training cooperative neural network ensembles

نویسندگان

  • Md. Monirul Islam
  • Xin Yao
  • Kazuyuki Murase
چکیده

Presents a constructive algorithm for training cooperative neural-network ensembles (CNNEs). CNNE combines ensemble architecture design with cooperative training for individual neural networks (NNs) in ensembles. Unlike most previous studies on training ensembles, CNNE puts emphasis on both accuracy and diversity among individual NNs in an ensemble. In order to maintain accuracy among individual NNs, the number of hidden nodes in individual NNs are also determined by a constructive approach. Incremental training based on negative correlation is used in CNNE to train individual NNs for different numbers of training epochs. The use of negative correlation learning and different training epochs for training individual NNs reflect CNNEs emphasis on diversity among individual NNs in an ensemble. CNNE has been tested extensively on a number of benchmark problems in machine learning and neural networks, including Australian credit card assessment, breast cancer, diabetes, glass, heart disease, letter recognition, soybean, and Mackey-Glass time series prediction problems. The experimental results show that CNNE can produce NN ensembles with good generalization ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pruning Algorithm for Training Cooperative Neural Network Ensembles

We present a training algorithm to create a neural network (NN) ensemble that performs classification tasks. It employs a competitive decay of hidden nodes in the component NNs as well as a selective deletion of NNs in ensemble, thus named a pruning algorithm for NN ensembles (PNNE). A node cooperation function of hidden nodes in each NN is introduced in order to support the decaying process. T...

متن کامل

A Hybrid Approach to Design Neural Network Ensemble

ACKNOWLEDGEMENTS We would like to express our heartiest gratitude and thanks to our advisor, Dr. Md. Monirul Islam, for his time, advice, encouragement and guidance throughout our thesis. We are very fortunate to work with him and have benefited greatly from his advice. We are very much grateful to Dr. Muhammad Masroor Ali, the Head of the department, for assuring a good atmosphere for research...

متن کامل

Constructive Neural Networks: a Review

In conventional neural networks, we have to define the architecture prior to training but in constructive neural networks the network architecture is constructed during the training process. In this paper, we review constructive neural network algorithms that constructing feedforward architecture for regression problems. Cascade-Correlation algorithm (CCA) is a well-known and widely used constr...

متن کامل

New Constructive Neural Network Architecture for Pattern Classification

Problem statement: Constructive neural network learning algorithms provide optimal ways to determine the architecture of a multi layer perceptron network along with learning algorithms for determining appropriate weights for pattern classification problems. These algorithms initially start with small network and dynamically allow the network to grow by adding and training neurons as needed unti...

متن کامل

Ensemble strategies to build neural network to facilitate decision making

There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2003